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I. Introduction 

We consider the general case of a chemical reaction complicated by phase transition in- 
side a porous catalyst granule; we represent the general scheme of the reaction in the form 

A L ~ B  L . 
, , + c o  

A G -*" .B G 

where A L is a multicomponent liquid, which is converted into another multicomponent liquid 
B L and a multicomponent gas C G as a result of chemical reaction on the surface of the cata- 
lyst. Moreover, A L and B L evaporate with the formation of vapor-phase components A G and BG, 
where chemical conversion also takes place with the formation of B G and C G. 

In the derivation of the mathematical description we consider the liquid phase to con- 
sist of m components, and the vapor--gas phase to consist of n components, where the fraction 
of the latter (k = n -- m) formed by chemical reaction is insoluble in the liquid phase. We 
also assume that the temperatures of the granule matrix and the gas--liquid flow are equal, 
the liquid is incompressible, and the vapor-gas medium obeys the laws of ideal gases and mix- 
tures. In addition to the foregoing, we also invoke the standard assumptions of multiphase 
hydrodynamics [I], viz.: Each of the phases is homogeneous and continuous, and averaging of 
the parameters over elementary volumes is allowed. 

2. Mathematical Model 

The transport of material (heat) inside the porous granule takes place in the general 
case by an effective diffusion (thermal conduction) process for each phase, and also by con- 
vective flow induced by a radial pressure gradient in the granule. 

Phase transition takes place as a result of the liberation of a poorly soluble gas formed 
in chemical reaction and also as a result of evaporation (condensation) of the liquid compo- 
nents. The analysis of the latter phase transitions poses a rather difficult problem. The 
following approaches are possible in principle. 

One approach is based on the notitions of molecular-kinetic theory [2]. In this case, 
however, it is necessary to introduce empirical coefficients, the numerical values of which 
are unknown for such a complicated process. 

If the presence of concentration equilibrium is postulated, as is valid for low chemical 
reaction rates, the phase transition rates of the components can be calculated by numerical 
differentiation of the material balance equations for the vapor-gas phase [3]. 

The approach used in the present study is based on the notion that the main factor con- 
tributing to the formation of the vapor--gas mixture is chemical reaction, which takes place 
without equilibrium saturation of the porous structure, owing to the appreciable strength of 
the catalyst. In this formulation the problem differs considerably from the well-known models 
found in [4, 5] for the description of transport processes in porous media. 

Here we give a mathematical model and some results of a numerical analysis. We write the 
material balance for the vapor--gas phase in the form 

0 0 ( ~ ) 0 Yli, (2.1) 0-]- (~lPlYli)  = "-~ D l # l  (PlYli) - -  ~ (UlalPlYll)  + viW1 + ~iW~ * ~ * 
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where the term PiW2 is absent for i = l,...,m and the term ~Y~i is absent for i = m + 1,...,n. 

The corresponding balance for the liquid phase is written in the form 

0( 0 )0 
0-7 (a2P2c2i) = "~[ D2i~2 7 [  (p2c2~) - -  "T/(u2a2P2c~i) - -  ~Yl~ + 9,W2, g = l ,  m, ( 2 . 2 )  

where a is the fraction of the phase, p is the density, D is the effective diffusion coef- 

ficient, y is the relative weight concentration of the component in the vapor--gas phase, c 
is the same in the liquid phase, u is the convective flow velocity inside the porous granule, 
W is the chemical reaction rate, v and ~ are the stoichiometric coefficients of the reactions, 

is the total rate of transition from the liquid to the vapor-gas phase, t is the time, and 
I is the coordinate. The index I refers to the vapor--gas phase, the index 2 to the liquid, 
the index i to the particular component in the phase, and the asterisk * to the equilibrium 
value of a parameter at the phase interface. 

We sum (2.1) over all vapor--gas components and sum (2.2) over the components of the 
liquid phase. Taking into account the fact that 

i=1 i=1 i=1 i = l  

Z ' - ~  Ol J 

we obtain 

(%pl) o 
ez (u,%p~)+ ~; 

5: ~ (%p~) = - -  ~ (u2%p2) - -  (I) y ~  + W 2 ~ I~{o 
i = l  ' ~ = i  

The following relation must naturally be satisfied: 

.@ = ( D ~  * Yn -- W~ Vi, 
i ~ l  i~1 . 

whence we infer that the total phase-transition rate is 

(~ TD = - -  Wp~/~1 ~t t 2__/=1 Yl~ " 

(2.g) 

(2.4) 

(2.5) 

The heat balance equation, written in terms of the enthalpies of the components, goes 
over" to the temperature equation after suitable transformations: 

c i -- a OT O 8T 
\ c - -7--  + a2P2 i=l c2icP2i + a lPl  liCPli 87 = ~--[ ~ef~'T - 

aT WjQj  (D * 
- -  Ul(~Ip I 'YliCpli + u2a2p 2 c~c~c  -ST + - -  Yuh i ,  

where T is the temperature, lef is the effective thermal conductivity of the porous granule, 
c c is the specific heat of the catalyst, s is the fraction of pores inside the granule, Cp is 
the specific heat of the phase, h is the heat of phase transition, and Q is the energy re- 
lease. The remaining notation is analogous to that described for the material balance equa- 
tion. 

The system of equations (2.1)-(2.6) must be augmented with the equation of state of the 
vapor--gas phase 

p = p l R T  "~..~ , 
i~ l  

where p is the pressure, R is the gas constant, and M is the molecular weight of the compo- 
nent. 
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To close the system it is necessary to determine the values of the equilibrium concen- 
trations Y~i at the phase interface and the velocities ul and u2. 

The value of Y~i depends on the concentration of the component in the liquid phase and 
the temperature of the medium. For its determination it is necessary to use Raoult's and 
Dalton's laws and the Clausius-Clapeyron equation: 

Y l l  = "~- ~ ,  

M M 
where Yli and c2i are the mole concentration of the corresponding components and Pli is the 
saturated vapor pressure of the component. The transition from mole concentrations to weight 
concentrations can be made on the basis of conventional relations. 

In calculating the flow velocities ul and u2 of the phases we assume that Darcy's law 
holds inside the porous structure: 

uj = --?iOpffOl, ] = 1 ;2 ,  

where ~ i s  t he  p e r m e a b i l i t y  of  t he  g r a n u l e  f o r  the  j - t h  p h a s e .  Making use  of  t he  f a c t  t h a t  
t he  p r e s s u r e s  in  the  l i q u i d  and vapor - -gas  phase s  a r e  c o n n e c t e d  t h r o u g h  the  c a p i l l a r y  p r e s s u r e ,  
we deduce t he  e x p r e s s i o n s  

�9 u2 = --?20p/Ol --BOaJOl, ul = --ylOp/Ol, 

where p i s  the  p r e s s u r e  in the  sy s t em of  g a s - f i l l e d  p o r e s  i n s i d e  the  g r a n u l e  and B i s  a c o e f -  
f i c i e n t  characterizing the rate of capillary transport of the liquid, Analytical formulas 
for the estimation of this parameter according to the type of capillary porous structure of 
the medium are given in [6]. 

3. Boundary Conditions and Difference Scheme 

Equality of the heat and material fluxes are taken as the natural boundary conditions 
on the sidewall of the granule: 

D1~I ~ (PlYI~) = D,ifil -$f kPlYli) = ~iai (YI~ -- Yx~), 

D~ia2 -8- f (pac2i) = D2i~2 -SF(P2C~i) = P2a2 (c2i - -  c2i), ( 3 . 1 )  

OT ar*=~(T* T), 
~ e f ~  " =  ~ef"~f" 

where Bj is the coefficient of mass transfer of the j-th phase from the surface of the granule 
(j = I for the vapor--gas phase, and j = 2 for the liquid) and ~ is the coefficient of heat 
transfer between the granule and the gas--liquid medium. The asterisk * refers to quantities 
outside the porous granule. However, an inherent difficulty in the application of relations 
(3.1) is the determination of the heat and mass fluxes to the outside surface of the granule. 

We consider two cases. 

I. The temperature of the granule surface is lower than the boiling point of any com- 
ponent of the liquid phase at the ambient pressure. 

We assume that the granule is surrounded by a two-phase zone, the thickness 6 of which 
is numerically equal to the capillary constant calculated from the Taylor instability [7]: 

a = "I /~/g(p~ - p~), 

where o is the coefficient of surface tension of the liquid and g is the free-fall accelera- 

tion. 

On the other hand, the thickness of the two-phase zone can be determined from the balance 
of the quantities of substance formed as a result of chemical reaction and phase transition 
and entrained by continuously ascending bubbles: 

where u~ *) and ~ a re  the  v e l o c i t y  of  the  v a p o r - g a s  phase  and i t s  f r a c t i o n  a t  ; = L, Rg 
is  t he  r a d i u s  of  the  g r a n u l e ,  R* i s  the  t h i c k n e s s  of  the  gas  c a v i t y  a round  the  g r a n u l e ,  and 
u* i s  the  r a t e  of  a s c e n s i o n  of  t he  b u b b l e s .  
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Now, if the thickness of the gas cavity is smaller than the detached bubble radius, R* < 
6, then 

6 o = 6 ,  a~=--~-, T* Tg ~ - ~ ,  (3.2) L~ 

and if R* > 6, 

* T *  Tg - T= 

where Tg is the temperature of the surface the granule, T~ is the bulk temperature at a dis- 
tance L~ from the surface of the granule, 60 is the thickness of the two-phase zone, and T* 
is the temperature of the vapor--liquid medium in the zone 60 around the granule. Here the 
heat- and mass-transfer coefficients are calculated according to formulas given in [8]. 

2. The temperature of the surface of the granule is higher than the temperature of the 
surrounding liquid (Tbo). Then the thickness of the vapor bubble can be calculated: 

R* ~ - -  rb~ ,L~ I T g -  T~ " 

Once again, if the thickness of the vapor bubble is smaller than the detached bubble radius 
(a* < 6), 

, R* T* ~ ,Tg ,~  --T~ 
6 o = 6 ,  ~a = 7 '  -- L~" "6~ ( 3 . 3 )  

and if R* > 6, 

" * T* Tb o 8 0 = B*, a 1 = t, = , 

where the heat- and mass-transfer coefficients are calculated according to the film-boiling 
formulas [8]. 

Natural symmetry conditions are specified at the center of the granule: 

aal 0Yal 0c~i 0P 0 .  (3.4) 
oz a-~-='0z = 0--7- 

We fix the following sequence of solution of the system of equations (2.1)-(2.(5) with 
the boundary conditions (3.2)-(3.4). Substituting the expression (2.7) for u2 in (2.4), we 
determine ~2 from the equation 

i=1 i=i 

Then from Eqs. (2.1) and (2.2) we determine the n concentrations Yli and the m -- ] concen- 
trations c2i, and from Eq. (2.6) we determine T. We can now calculate Pl, P, ul, and u2. 

In formulating the difference schemes for Eqs. (3.5), (2.]), and (2.2) we use a so-ca!led 
scheme with donor cells [9], which has the conservative property, i.e., it transfers any dis- 
turbance by convection only in the direction of the velocity. For an equation of the form 

0 (au)=__~(D Ou) o ( v u ) + ]  
o--f -~- --Y[ 

this scheme is written as follows: 

~z ~+l--a~U~ ( u~+l un. +1 u~+l_uU.+l ) 
'i J i "  D ' { + 1 -  ~ '/--I 

t = -~- c-~l/~ ~ Di-i/2 h 

For Eq. (2.6) we use an ordinary upwind differencing scheme [9]. 

Owing to the nonlinearity of the resulting system of difference equations, it is inte- 
grated in each time step. It can be shown in this connection that for sufficiently small 
times steps T the iterations converge, and the solution of the finite-difference problem ap- 
proximates the solution of the differential problem with order O(T, h). 
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The computational process is therefore formulated as follows. If the number of itera- 
tions in the time step exceeds kma x = 6, the time step is decreased by I/4, and if the number 
of iterations is smaller than kmi n = 2, the time step is doubled. 

4. Numerical Analysis and Its Results 

It is convenient to carry out the numerical analysis of the model equations after ex- 
pressions (2.1)-(2.6) have been reduced to dimensionless form. We choose the dimensionless 
variables 

~l/L, ~=atlL2,,. P=P/Po, P=PIIo~ , ,  O =  T - - T  0 Rr~ E~ 

where  To i s  a r e f e r e n c e  t e m p e r a t u r e ,  E i s  t h e  a c t i v a t i o n  e n e r g y  of  t h e  c h e m i c a l  r e a c t i o n ,  and 
a is the thermal diffusivity of the granule. We analyze the process as a function of the 
dimensionless parameters 

~p. kiL 2 
Y t  = Dt  ~ ~ ~ Dqt Di 

where k i is the reaction rate constant (i = I, 2) and P0 is the pressure outside the granule. 
Ths significance of these parameters is clear from an analysis of the dimensioned quantities 
entering into them. 

At the present time the authors are unaware of any experimental data on the temperature, 
pressure, and concentration fields inside a porous granule. It is therefore difficult to 
estimate the reliability of the mathematical model. 

Accordingly, here we give the numerical analysis results that provide a qualitatively 
correct description of the ongoing process and quantitative agreement with experimentally 
observed characteristics such as, e.g., the period of the mean-temperature fluctuations. 

As a result of the calculations we have discerned several of the most typical regimes 
of the process. 

One of those regimes corresponds to filling of the porous structure with a reacting 
liquid. It is interpreted as the time interval from the start of filling of the granule with 
the liquid until the establishment of a pressure profile therein that grows monotonically to- 
ward the center. This regime is characterized by a successive increase in the fraction of the 
liquid phase inside the porous granule and a considerable elevation of the pressure and tem- 
perature. Typical examples of such solutions are shown in Figs. I-3. 

The curves in Fig. I are numbered as follows: I) T = 0.632"10-3; 2) 1.27-10-3; 3) 2-10-3; 
4) 8.5"10-3; 5) steady state; it is inferred from the figure that for small values of T a 
local pressure increase is observed near the sidewall in connection with the chemical con- 
version of the liquid entering the granule. The value of this maximum and the rate of in- 
crease of the pressure fall between wide limits and depend on 71 and on the rate of phase 
transition. 

As the process evolves, the coordinate of the maximum pressure shifts toward the center 
of the granule, in which case the fraction of the liquid phase decreases; see Fig. 2; I) T = 
0.632-10-3; 2) 1.27"10-3; 3) 2"10 -3 �9 After reaching the center, the liquid begins to move 
rapidly away, so that either the granule is completely dried out if the capillary absorption 
forces are not sufficiently large, or it is partially filled. The value of the pressure at 
the center of the granule can greatly exceed its value at the outer surface for a brief mo- 
ment; this is obviously one of the causes of the destruction of catalyst granules when they 
become impregnated. 

The temperature of the phases during filling varies between wide limits and can have a 
nonmonotonic behavior, particularly for large values of B and 42; see Fig. 3: I) T = 0.61- 
10-3; 2) 0.611.10-3; 3) 0.612-10-3; 4) 11.6"10-3; 5) steady state. 

In addition to transient processes, we have also carried out a numerical analysis of 
the steady-state behavior of chemical reaction inside the granule. Three distinct steady 
states are obtained here, depending on the relationship of the dimensionless parameters. 

The first state corresponds to a low-temperature liquid-filled granule and the second 
state to the high-temperature domain of the process. In this case the porous granule is 
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surrounded by a vapor sheath, and the chemical reaction takes place only in the vapor phase. 
The dynamics of the evolution of this state is shown in Fig. 4: I) YI = 2"102; 2) 2.105. 

We have also obtained numerically a third, fluctuation steady-state regime, which is 
characterized by periodic fluctuations of the granule temperature and of the pressure and 
fraction of the liquid phase in it. This state is established when the heat of chemical 
reaction is inadequate for evaporation of the liquid and the creation of a stable vapor film. 
Here the fluctuation period depends not only on the relationship of the dimensionless para- 
meters, but also on the temperature of the liquid surrounding the granule. It is important 
to note that all these steady states are observed experimentally. 

The numerical calculations thus show that our proposed model provides a qualitatively 
correct description of the behavior of a multiphase process in and around a porous catalyst 
granule and can be used to analyze a number of industrially important processes. 
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